Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microorganisms ; 11(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2268787

RESUMEN

When piglets are infected by virulent and avirulent strains of swine acute diarrhea syndrome coronavirus (SADS-CoV), there are obvious differences in their clinical symptoms; however, the specific mechanisms of pathogenicity and the immune regulation of highly pathogenic and low pathogenic strains are unknown. We collected intestinal tissues from SADS-CoV-infected piglets, performed a whole transcriptome sequencing analysis, including mRNA, miRNA, lncRNA, cicrRNA, and TUCP, and performed functional and correlation analyses of differentially expressed RNAs. Our results showed that the differentially expressed RNAs in group A versus group B (AvsB), group A versus group C (AvsC), and group B versus group C (BvsC) were relevant to immune and disease-related signaling pathways that participate in the organisms' viral infection and immune regulation. Furthermore, data obtained from the HAllA analysis suggested that there was a strong correlation between the differentially expressed RNAs. Specifically, LNC_011487 in the P set was significantly negatively correlated with ssc-miR-215, and LNC_011487 was positively correlated with PI3. Moreover, we also constructed a differentially expressed RNA association network map. This study provides a valuable resource for studying the SADS-CoV transcriptome and pathogenic mechanism from the perspective of RNA to understand the differences in and consistency of the interaction between virulent and attenuated SADS-CoV strains and hosts.

2.
PLoS Pathog ; 19(3): e1011201, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2281114

RESUMEN

Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Papaína , Papaína/metabolismo , Beclina-1 , Péptido Hidrolasas/metabolismo , Autofagia , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Front Microbiol ; 14: 1126707, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2264667

RESUMEN

In this study, we detected a circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA virus [named Po-Circo-like (PCL) virus] in intestinal tissue and fecal samples of pigs. PCL virus contains a single-stranded DNA genome, and ORF1 encodes the Rep and not the typical capsid protein encoded in PCV. The Rep protein may be responsible for viral genome replication. In addition, PCL virus may be one of the pathogens causing diarrhea symptoms in pigs. We identified four strains of PCL virus in two different pig farms with severe diarrhea outbreaks in Hunan Province, China. The strains in this study share 85.7-99.7% nucleic acid identity and 84.7-100% amino acid identity with Rep of the reference strains. A multiple sequence alignment of these PCL viruses and Bo-Circo-like CH showed a identity of 93.2% for the Rep protein, and the nucleotide identity was 86.7-89.3%. Moreover, Bo-Circo-like CH and HN75, HN39-01, HN39-02 had similar stem-loop sequences. In conclusion, the present study is the first detailed report of the PCL virus in Hunan provinces, which is a potential new virus in pigs that might be involved in cross-species transmission. Further investigation is needed to determine the pathogenesis of this virus and its epidemiologic impact.

5.
Front Microbiol ; 13: 858460, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1809436

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an enterovirus that can cause acute diarrhea and death in piglets and cause serious economic losses to the pig industry. SADS-CoV membrane (M) protein mainly plays a key role in biological processes, such as virus assembly, budding, and host innate immune regulation. Understanding the interaction between M protein and host proteins is very important to define the molecular mechanism of cells at the protein level and to understand specific cellular physiological pathways. In this study, 289 host proteins interacting with M protein were identified by glutathione-S-transferase (GST) pull-down combined with liquid chromatography-mass spectrometry (LC-MS/MS), and the protein-protein interaction (PPI) network was established by Gene Ontology (GO) terms and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways analysis. Results showed that SADS-CoV M protein was mainly associated with the host metabolism, signal transduction, and innate immunity. The Co-Immunoprecipitation (CO-IP) validation results of six randomly selected proteins, namely, Rab11b, voltage-dependent anion-selective channel 1 (VDAC1), Ribosomal Protein L18 (RPL18), RALY, Ras Homolog Family Member A (RHOA), and Annexin A2 (ANXA2), were consistent with LC-MS results. In addition, overexpression of RPL18 and PHOA significantly promoted SADS-CoV replication, while overexpression of RALY antagonized viral replication. This work will help to clarify the function of SADS-CoV M protein in the life cycle of SADS-CoV.

6.
Virus Res ; 278: 197843, 2020 03.
Artículo en Inglés | MEDLINE | ID: covidwho-833528

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly emerging enteric coronavirus, is considered to be associated with swine acute diarrhea syndrome (SADS) which has caused significantly economic losses to the porcine industry. Interactions between SADS-CoV and the host innate immune response is unclear yet. In this study, we used IPEC-J2 cells as a model to explore potential evasion strategies employed by SADS-CoV. Our results showed that SADS-CoV infection failed to induce IFN-ß production, and inhibited poly (I:C) and Sendai virus (SeV)-triggered IFN-ß expression. SADS-CoV also blocked poly (I:C)-induced phosphorylation and nuclear translocation of IRF-3 and NF-κB. Furthermore, SADS-CoV did not interfere with the activity of IFN-ß promoter stimulated by IRF3, TBK1 and IKKε, but counteracted its activation induced by IPS-1 and RIG-I. Collectively, this study is the first investigation that shows interactions between SADS-CoV and the host innate immunity, which provides information of the molecular mechanisms underlying SASD-CoV infection.


Asunto(s)
Alphacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Proteína 58 DEAD Box/antagonistas & inhibidores , Interferón beta/antagonistas & inhibidores , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/metabolismo , Infecciones por Coronavirus/virología , Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferón beta/metabolismo , FN-kappa B/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Transducción de Señal , Porcinos
7.
Front Vet Sci ; 7: 132, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-829876
8.
Anal Chim Acta ; 1125: 57-65, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: covidwho-626172

RESUMEN

Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV) are three emerging and re-emerging coronaviruses (CoVs). Symptoms caused by these three viruses are extremely similar, including acute diarrhea, vomiting and even death in piglets. To date, strict biosecurity is still the most effective disease prevention and control measures, and the early detection of pathogens is the most important link. Here, we developed a microfluidic-RT-LAMP chip detection system for the first time, which could detected PEDV, PDCoV and SADS-CoV simultaneously, and had advantages of rapid, simple, sensitive, high-throughput, and accurate at point-of-care settings. The lowest detection limits of the microfluidic-RT-LAMP chip method are 101 copies/µL, 102 copies/µL and 102 copies/µL for PEDV, PDCoV and SADS-CoV, respectively. The whole detection procedure can be finished rapidly in 40 min without any cross-reaction with other common swine viruses. A total of 173 clinical swine fecal samples characterized with diarrheal symptoms were used to evaluate the performance of the newly developed system, which presented good stabilities (C.V.s<5%) and specificities (100%), and possessed sensitivities of 92.24%, 92.19% and 91.23% for PEDV, PDCoV and SADS-CoV respectively. In summary, the established microfluidic-RT-LAMP chip detection system could satisfy the demanding in field diagnoses, which was suitable for promotion in remote areas due to its fast, portable and cost-effective characters.


Asunto(s)
Coronavirus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/análisis , Alphacoronavirus/genética , Alphacoronavirus/aislamiento & purificación , Animales , Coronavirus/aislamiento & purificación , Diarrea/diagnóstico , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Dispositivos Laboratorio en un Chip , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Sistemas de Atención de Punto , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , ARN Viral/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Porcinos
9.
Emerg Microbes Infect ; 9(1): 439-456, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-124861

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the aetiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. To understand the effect of SADS-CoV on host cells, we characterized the apoptotic pathways and elucidated mechanisms underlying the process of apoptotic cell death after SADS-CoV infection. SADS-CoV-infected cells showed evidence of apoptosis in vitro and in vivo. The use of a pan-caspase inhibitor resulted in the inhibition of SADS-CoV-induced apoptosis and reduction in SADS-CoV replication, suggestive of the association of a caspase-dependent pathway. Furthermore, SADS-CoV infection activated the initiators caspase-8 and -9 and upregulated FasL and Bid cleavage, demonstrating a crosstalk between the extrinsic and intrinsic pathways. However, the proapoptotic proteins Bax and Cytochrome c (Cyt c) relocalized to the mitochondria and cytoplasm, respectively, after infection by SADS-CoV. Moreover, Vero E6 and IPI-2I cells treated with cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore (MPTP) opening, were completely protected from SADS-CoV-induced apoptosis and viral replication, suggesting the involvement of cyclophilin D (CypD) in these processes. Altogether, our results indicate that caspase-dependent FasL (extrinsic)- and mitochondria (intrinsic)- mediated apoptotic pathways play a central role in SADS-CoV-induced apoptosis that facilitates viral replication. In summary, these findings demonstrate mechanisms by which SADS-CoV induces apoptosis and improve our understanding of SADS-CoV pathogenesis.


Asunto(s)
Alphacoronavirus/fisiología , Apoptosis , Caspasas/metabolismo , Infecciones por Coronavirus/metabolismo , Ciclofilina D/metabolismo , Animales , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Ciclofilina D/genética , Porcinos , Células Vero , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA